Environmental Protection Agency

Pt. 82, Subpt. A, App. I

- 5. Pursuant to Decision XVIII/15 of the Parties to the Montreal Protocol, methyl bromide is exempted for the following approved essential laboratory and analytical purposes listed in following items (a) through (d). Use of methyl bromide for field trials is not an approved use under the global laboratory and analytical use exemption. The provisions of Appendix G, paragraphs (1), (2), (3), and (4), regarding purity, mixing, container, and reporting requirements for other exempt ODSs, also apply to the use of methyl bromide under this exemption.
- a. Methyl bromide is exempted as an approved essential laboratory and analytical use as a reference or standard to calibrate equipment which uses methyl bromide, to monitor methyl bromide emission levels, or

- to determine methyl bromide residue levels in goods, plants and commodities;
- b. Methyl bromide is exempted as an approved essential laboratory and analytical when used in laboratory toxicological studies:
- c. Methyl bromide is exempted as an approved essential laboratory and analytical use to compare the efficacy of methyl bromide and its alternatives inside a laboratory; and
- d. Methyl bromide is exempted as an approved essential laboratory and analytical use as a laboratory agent which is destroyed in a chemical reaction in the manner of feedstock.

 $[60~{\rm FR}~24986,~{\rm May}~10,~1995,~{\rm as}$ amended at 67 FR 6362, Feb. 11, 2002; 72 FR 73269, Dec. 27, 2007]

APPENDIX H TO SUBPART A OF PART 82—CLEAN AIR ACT AMENDMENTS OF 1990 PHASEOUT SCHEDULE FOR PRODUCTION OF OZONE-DEPLETING SUBSTANCES

Date	Carbon tetra- chloride (percent)	Methyl chloro- form (per- cent)	Other class sub-stances (percent)	Date	Carbon tetra- chloride (percent)	Methyl chloro- form (per- cent)	Other class sub-stances (percent)
1994 1995 1996	70 15 15 15	85 70 50 50	65 50 40 15	1998	15 15	50 50 20 20	15 15

APPENDIX I TO SUBPART A OF PART 82—GLOBAL WARMING POTENTIALS (MASS BASIS), REFERENCED TO THE ABSOLUTE GWP FOR THE ADOPTED CARBON CYCLE MODEL CO₂ DECAY RESPONSE AND FUTURE CO₂ ATMOSPHERIC CONCENTRATIONS HELD CONSTANT AT CURRENT LEVELS. (ONLY DIRECT EFFECTS ARE CONSIDERED.)

Creation (abouting)	Chamical formula	Global warming potential (time horizon)			
Species (chemical)	Chemical formula	20 years	100 years	500 years	
CFC-11	CFCl ₃	5000	4000	1400	
CFC-12	CF ₂ Cl ₂	7900	8500	4200	
CFC-13	CCIF ₃	8100	11700	13600	
CFC-113	C ₂ F ₃ Cl ₃	5000	5000	2300	
CFC-114	C ₂ F ₄ Cl ₂	6900	9300	8300	
CFC-115	C ₂ F ₅ Cl	6200	9300	13000	
H-1301	CF ₃ Br	6200	5600	2200	
Carbon Tet	CCI ₄	2000	1400	500	
Methyl Chl	CH ₃ CCI ₃	360	110	35	
HCFC-22	CF ₂ HCI	4300	1700	520	
HCFC-141b	C ₂ FH ₃ Cl ₂	1800	630	200	
HCFC-142b	C ₂ F ₂ H ₃ Cl	4200	2000	630	
HCFC-123	C ₂ F ₃ HCl ₂	300	93	29	
HCFC-124	C ₂ F ₄ HCl	1500	480	150	
HCFC-225ca	C ₃ F ₅ HCl ₂	550	170	52	
HCFC-225cb	C ₃ F ₅ HCl ₂	1700	530	170	

AUnited Nations Environment Programme (UNEP), February 1995, Scientific Assessment of Ozone Depletion: 1994, Chapter 13, "Ozone Depleting Potentials, Global Warming Potentials and Future Chlorine/Bromine Loading," and do not reflect review of scientific documents published after that date.